Metallothionein isoform 2A expression is inducible and protects against ROS-mediated cell death in rotenone-treated HeLa cells.
نویسندگان
چکیده
The role of MT (metallothionein) gene expression was investigated in rotenone-treated HeLa cells to induce a deficiency of NADH:ubiquinone oxidoreductase (complex I). Complex I deficiency leads to a diversity of cellular consequences, including production of ROS (reactive oxygen species) and apoptosis. HeLa cells were titrated with rotenone, resulting in dose-dependent decrease in complex I activity and elevated ROS production at activities lower than 33%. Expression of MT2A (MT isoform 2A), but not MT1A or MT1B RNA, was significantly inducible by rotenone (up to 7-fold), t-BHP (t-butyl hydroperoxide; 5-fold) and CdCl2 (50-fold), but not ZnCl2. Myxothiazol treatment did not elevate either ROS or MT2A levels, which supports a ROS-related mechanism for rotenone-induced MT2A expression. To evaluate the role of MT2A expression, MT2A and MT1B were overexpressed in HeLa cells and treated with rotenone. Compared with control and MT1B-overexpressing cells, ROS production was significantly lower and cell viability higher in MT2A-overexpressing HeLa cells when ROS production was enhanced by treatment with t-BHP. Mitochondrial membrane potential was noticeably less reduced in both MT-overexpressing cell lines. MT2A overexpression in rotenone-treated cells also significantly reduced or delayed apoptosis induction, as measured by caspase 3/7 activity and cytosolic nucleosome enrichment. We conclude that MT2A offers significant protection against the main death-causing consequences of rotenone-induced complex I deficiency in HeLa cells. Our results are in support of the protective role against oxidative stress ascribed to MTs and provide evidence that MT2A expression may be a beneficial downstream adaptive response in complex I-deficient cells.
منابع مشابه
Coenzyme Q10 Protects Hippocampal Neurons against Ischemia/ Reperfusion Injury via Modulation of BAX/Bcl-2 Expression
Introduction: Preliminary studies have con.rmed reduction in cell death following treatment with antioxidants. According to this .nding we study the relationship between consumption of CoQ10 and expression of Bax and Bcl2 in hippocampus following ischemia/reperfusion as proteins involved in cell programmed death or apoptosis. Methods: We studied the protective role of CoQ10 against ischemia-rep...
متن کاملMitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species.
Autophagy is a self-digestion process important for cell survival during starvation. It has also been described as a form of programmed cell death. Mitochondria are important regulators of autophagy-induced cell death and damaged mitochondria are often degraded by autophagosomes. Inhibition of the mitochondrial electron transport chain (mETC) induces cell death through generating reactive oxyge...
متن کاملNeuroprotective effect of topiramate against 6-hydroxydopamine-induced cell death in Parkinson's disease cell mode
Introduction: Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive neuronal dysfunction. Growing evidence has shown that oxidative stress plays a crucial role in the pathogenesis of Parkinson's disease. Correspondingly, the current study evaluated the protective effect of topiramate in 6-hydroxydopamine induced oxidative stress and apoptosis in PC12 cells...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 395 2 شماره
صفحات -
تاریخ انتشار 2006